
PageSeer: Using Page Walks to Trigger Page Swaps in Hybrid Memory Systems

Apostolos Kokolis, Dimitrios Skarlatos, and Josep Torrellas
University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu

Abstract—
Hybrid main memories composed of DRAM and Non-

Volatile Memory (NVM) combine the capacity benefits of
NVM with the low-latency properties of DRAM. For highest
performance, data segments should be exchanged between
the two types of memories dynamically—a process known
as segment swapping—based on the access patterns to the
segments in the program. The key difficulty in hardware-
managed swapping is to identify the appropriate segments to
swap between the memories at the right time in the execution.

To perform hardware-managed segment swapping both
accurately and with substantial lead time, this paper proposes
to use hints from the page walk in a TLB miss. We call the
scheme PageSeer. During the generation of the physical address
for a page in a TLB miss, the memory controller is informed.
The controller uses historic data on the accesses to that page
and to a subsequently-referenced page (i.e., its follower page),
to potentially initiate swaps for the page and for its follower.
We call these actions MMU-Triggered Prefetch Swaps. PageSeer
also initiates other types of page swaps, building a complete
solution for hybrid memory. Our evaluation of PageSeer with
simulations of 26 workloads shows that PageSeer effectively
hides the swap overhead and services many requests from
the DRAM. Compared to a state-of-the-art hardware-only
scheme for hybrid memory management, PageSeer on average
improves performance by 19% and reduces the average main
memory access time by 29%.

Keywords-Hybrid Memory Systems; Non-Volatile Memory;
Virtual Memory; Page Walks; Page Swapping.

I. INTRODUCTION

Data-intensive applications demand large memory capac-
ity and high bandwidth with low power consumption. While
DRAM has been used as main memory for decades due
to its relatively low latency and energy consumption, it is
suffering from device scalability problems [1]. As a result,
new memory solutions are required.

Non-Volatile Memory (NVM) technologies, such as
PCM [2] and STT-RAM [3], show promise to satisfy the
increasing memory capacity demands of workloads. These
memories can attain high capacity at low cost [2], [4]. Mem-
ory vendors have announced the production of NVMs [5],
and impending systems will include them.

Unfortunately, NVMs have drawbacks and cannot simply
replace DRAM in their current form. Compared to DRAM,
read and write accesses in NVMs have higher latencies
and consume more energy. As a result, upcoming systems
are likely to incorporate a hybrid main memory system
composed of both DRAM and NVM.

The main challenge in a hybrid memory system is how
to exploit the capacity benefits of NVM, while benefiting

from the low latency of DRAM. Previous research has either
used DRAM as a cache for the NVM [6] or used a flat
address space configuration with both memories [7]. The
latter organization provides both higher aggregate bandwidth
and higher memory capacity. However, one needs to decide
in what memory to place specific data structures.

Optimal placement of data structures in a hybrid memory
system is hard to attain statically, as applications exhibit
dynamic changes of behavior. It is better to dynamically
move data segments between the two types of memory
(i.e., to swap segments between the memories) based on
the access patterns. Such a movement can be software- or
hardware-managed.

Hardware-managed swap techniques [7]–[9] are generally
preferred over software-managed ones because they induce
much lower overhead. However, they require special hard-
ware structures to track memory access activity, perform the
data swaps, and record the remappings of segments between
the memories. The efficient management of the relevant
metadata is crucial for performance.

The key difficulty in hardware-managed swap techniques
is to identify the appropriate segments to swap at the appro-
priate time in the execution. Aggressive schemes that move
a segment to DRAM upon the first access to it introduce
unnecessary traffic if the segment is not accessed much more
after the swap. Alternatively, schemes that require a history
of many accesses to the segment before moving it to DRAM
may react too slowly and hence not improve performance.

To perform hardware-managed segment swapping both
accurately and with substantial lead time, this paper proposes
to use hints from the page walk in a TLB miss. We
call the scheme PageSeer. During the generation of the
physical address for a page in a TLB miss, the memory
controller is informed. The controller uses historic data on
the accesses to that page and to a subsequently-referenced
page (i.e., its follower page), to potentially initiate swaps
for the page and for its follower. We call these actions
MMU-Triggered Prefetch Swaps. They are transparent to the
software. PageSeer also initiates other types of page swaps,
building a complete solution for hybrid memory.

We evaluate PageSeer using simulations of 26 workloads.
Our results show that PageSeer effectively hides the swap
overhead, and services many requests from the fast memory.
Compared to a state-of-the-art hardware-only scheme for
hybrid memory management, PageSeer on average improves
performance by 19% and reduces the average main mem-
ory access time by 29%. Further, MMU-triggered prefetch

596

2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/19/$31.00 ©2019 IEEE
DOI 10.1109/HPCA.2019.00012

swaps accurately predict future memory accesses. Overall,
PageSeer efficiently manages a hybrid memory system.

II. BACKGROUND & MOTIVATION

A. Hybrid Memories

Emerging NVM technologies, such as 3D XPoint [5]
and Phase Change Memory [2], have recently gained a lot
of attention. The high bit density, low static power, and
non-volatile aspects of these memories appear as a viable
solution to the increasing memory demands of workloads
and the slowdown of DRAM scaling. However, NVMs
exhibit higher latencies than DRAM, and therefore cannot
replace DRAM entirely without performance loss. For this
reason, the combination of DRAM and NVM has been
proposed as a method to efficiently increase system capacity,
performance, and reliability [6]. A memory system that
integrates both DRAM and NVM is typically called a hybrid
memory system.

A hybrid memory system can be configured in one of two
ways. In one configuration, the faster and smaller DRAM
is a hardware-managed cache for the slower and larger
NVM [10]–[15]. In the other, the DRAM and NVM are
configured as a flat address space, where the OS is aware of
both memories for page allocation [7]–[9], [16]–[18]. The
first configuration has the advantage that it can be easily
deployed and is transparent to the OS, with DRAM acting as
an additional level of caching between the Last Level Cache
(LLC) and main memory. However, it faces the challenge
of efficiently storing and accessing a large amount of tags
[11], [19]. Moreover, the overall capacity of the system
decreases by a non-negligible amount, as long as the sizes of
DRAM and NVM are comparable. Although previous work
has shown performance improvements for latency critical
applications [10], [13], capacity-limited applications do not
benefit as much [16]. Also, the overall memory bandwidth
is limited, since we cannot take advantage of the combined
bandwidth of the two memories.

The flat address space configuration has the advantage
that it provides both higher aggregate bandwidth and higher
memory capacity. Moreover, there is no need for tag storage.
However, it is challenging to decide the data placement and
swapping of data between the two memories.

Data swaps between the two memories can be done either
in software [18], [20], [21] or in hardware [7]–[9], [16], [17].
In both cases, we must identify data that are “hot” (i.e.,
accessed frequently) but reside in the slow memory, and
swap them with data that are “cold” but reside in the fast
memory. In a software-managed approach, the OS interrupts
the processor, swaps the pages, performs a TLB shootdown
to purge stale TLB entries, and continues execution. This
procedure can take several microseconds [22], and constrains
swaps to a coarse time granularity.

When data swaps are hardware-managed, they can happen
at finer time granularity. However, there are several chal-
lenges in this method. The first one concerns the consistency

between the OS view of memory and the data movements
that the hardware has performed. Since the OS is not aware
of any remapping, the hardware needs to keep track of
the data remappings that have occurred. Second, we need
dedicated hardware to decide when and what swaps to
perform between fast and slow memory. This means that
the hardware should be able to track memory activity, and
trigger a swap accurately and promptly to tolerate the swap
cost.

B. Hardware-Based Memory Management Techniques

Previous work has investigated hardware-only techniques
for managing hybrid memory systems. Typically, these tech-
niques rely on LLC misses to track main memory activity
and determine data swaps between DRAM and NVM. The
techniques differ in the size of the memory segments to swap
and what triggers a swap.

Suppose that we perform a segment swap between the
slow and the fast memory. Then, if a second segment from
the slow memory needs to be moved to the exact same
location in fast memory as the first one, it can do so with
a Slow or a Fast swap. In a slow swap, the first swap is
undone and then the second swap is performed. In a fast
swap, only one swap is performed, exchanging the second
segment from the slow memory with the segment currently
in fast memory (which used to be in slow memory).

CAMEO [16] migrates data in 64B blocks, and a swap
is triggered on every access to a block in slow memory.
CAMEO restricts the swap flexibility by allowing a set of
slow-memory blocks (which form a Swap Group) to be
swapped only with a single block of fast memory. Also, only
one of these slow-memory blocks can be in fast memory at
a time. Further, a slow-memory block can reside anywhere
within the slow-memory area assigned to its swap group.
CAMEO uses fast swaps. While CAMEO keeps the required
swap bandwidth low and is easy to implement, the small
swap granularity requires substantial meta-data storage and
misses the opportunity to take advantage of spatial locality.
Moreover, the direct mapping of the swap groups to single
fast-memory blocks may cause conflict misses.

PoM [7], [23] is similar to CAMEO, with the difference
that swaps happen at the granularity of 2KB, and a swap is
triggered when the number of accesses to a 2KB memory
segment reaches a threshold. PoM is adaptive, and the swap
threshold can change based on the program characteristics.
PoM uses fast swaps and has direct-mapped swap groups.

SILC-FM [9] uses segments (e.g., 2KB), and optimizes
the granularity of swaps, which can range from 64B sub-
blocks to the whole segment. It supports sub-block inter-
leaving, where two segments interleave data at sub-block
granularity. SILC-FM also relaxes swap groups to be set-
associative rather than direct-mapped. It uses slow swaps.

MemPod [8] further enhances swap flexibility by allowing
any slow-memory segment to be swapped with any fast-
memory segment within a Pod. This comes at the cost of a
substantial increase in the metadata overhead. MemPod uses

597

the Majority Element Algorithm [24] to identify memory
segments that are to be accessed in the future, and migrates
them to fast memory at 2KB granularity after predefined
time intervals.

Other hardware schemes target different aspects of hy-
brid memory systems. For example, BATMAN [25] tries
to optimize swaps so that the overall memory bandwidth
utilization is maximized. ProFess [17] proposes a cost-
benefit mechanism that decides swaps considering fairness
between different programs that compete for fast memory.

One difficulty in this area is the need to make swap
decisions early enough. Otherwise, it is likely that a swap for
a memory segment will not be finished by the time memory
requests for the segment arrive.

C. Page Walk
In x86, only 48 bits out of the 64-bit virtual address (VA)

are used for addressing. Of those, the lower 12 bits are
used for the offset within the 4KB page. When a virtual
to physical page translation is not found in the TLB, the
hardware initiates a page table walk. A page table walk
consists of the hardware stepping over four levels of page
tables (Figure 1): the Page Global Directory (PGD), the Page
Upper Directory (PUD), the Page Middle Directory (PMD)
and, finally, the Page Table Entry (PTE). The base of the
PGD is obtained by using the CR3 register, which is unique
to a process. Adding CR3 to bits 47-39 of the VA, we obtain
a PGD entry, whose contents is the base of the PUD table.
Adding this base to bits 38-30 of the VA, we obtain a PUD
entry, whose contents is the base of the PMD table. This
process repeats until we obtain the base of the requested
physical page, which is finally added to the page offset.

Figure 1: Page walk operation.

This process may require up to four memory accesses,
to get the entries in the PGD, PUD, PMD, and PTE tables.
To avoid main memory accesses, the data in these entries
can be stored in the caches (except in L1), along with
regular data. In addition, to further reduce the cost, modern
processors have an intermediate translation cache called the
Page Walk Cache (PWC), which stores a few entries per
translation level (except for the PTE). The PWC is accessed
before going to the L2 cache to obtain the entries. The four-
step page walk and the PWC are in the core’s Memory
Management Unit (MMU).

III. DESIGN OF PAGESEER

A. Main Idea
PageSeer is a hardware mechanism that initiates early

page swaps — also called Prefetch Swaps — between slow

and fast memory. Prefetch swaps are initiated before the
main memory receives multiple requests for the page in
slow memory to be moved to fast memory. To initiate
prefetch swaps, PageSeer uses state stored in a hardware
table called Page Correlation Table (PCT). Prefetch swaps
can be triggered by one of two events: (i) a hint from the
MMU (MMU-triggered Prefetch Swaps), or (ii) a regular
memory access (Prefetching-triggered Prefetch Swaps).

PageSeer also supports regular swaps, which are initiated
when the main memory receives a certain number of requests
for a page. To initiate regular swaps, PageSeer uses state
stored in a hardware table called Hot Page Table (HPT).

Most of PageSeer’s hardware structures are placed in the
memory controller, which we call Hybrid Memory Con-
troller (HMC). In addition, PageSeer needs swap buffers
in the DRAM and NVM memory modules, and slightly
modifies the MMUs. Figure 2 shows the architecture of
PageSeer, where the new or modified hardware structures
are shown shaded, and the added connections are shown
in lighter color. In the following, we first describe the
communication between MMU and HMC (Section III-B),
then the structures in the HMC (Section III-C), and then the
operation of PageSeer (Section III-D).

Core

L1

L2

Shared L3

L1 TLB

L2 TLB

Hybrid Memory
Controller (HMC)

MMU

Core

L1

L2

L1 TLB

L2 TLB

MMU

Processor Chip

Hybrid Memory
Controller (HMC)

Memory request

PRTc

HPTs
MMU
Driver

Filter PCTc

MMU
signal

Swap
Driver

Path to
Memories

Path to
Memories

DRAM

Logic Layer
Swap
Buffer

Crossbar interconnect

Logic Layer

NVM

Logic Layer
Swap
Buffer

Figure 2: PageSeer architecture, where the new or modi-
fied hardware structures are shown shaded, and the added
connections are shown in lighter color.

B. MMU-Triggered Prefetch Swaps

Memory-intensive applications that access many pages
are likely to miss in the TLB. Further, after a page walk,
applications with large working sets are unlikely to find
the requested PTE entry in the caches, and are likely
to have to go to main memory. Under such conditions,
PageSeer uses the time that it takes to satisfy a TLB miss
to potentially perform a prefetch swap of the requested page
and one additional page — bringing them to fast memory in
expectation that they will be referenced very soon. We call
these actions MMU-Triggered Prefetch Swaps.

This operation requires some hardware modifications. In
conventional systems, as soon as a page walk reaches the

598

fourth translation level and the address of the memory line
with the needed PTE entry is known, the MMU sends a
request to the L2 cache. In PageSeer, the MMU additionally
sends a signal to the MMU Driver in the HMC. This is
shown as action � in Figure 3.

L2

Shared L3

TLB

MMU

DRAMMMU
Driver

1

2

34

5
NVM

HMC

Figure 3: Performing MMU-triggered prefetch swaps in
PageSeer.

When the MMU Driver in the HMC receives the signal,
it sends a memory request to DRAM to obtain the PTE
entry (action � in Figure 3). When the HMC obtains the
PTE entry, it extracts the Physical Page Number (PPN)
from it. After that, based on the state of the PCT and other
internal state, it decides whether to perform a prefetch swap
of the requested page and one additional page (action � in
Figure 3). In any case, the memory line with the needed PTE
entry is cached in the MMU Driver of the HMC. Further,
some internal state in the HMC is updated.

This design has two benefits. The first one occurs if,
later, the request from the MMU to the L2 cache to obtain
the PTE entry ends-up missing in both the L2 and L3.
At that point, conventional systems send the request to the
memory controller, which should initiate a main memory
access (action � in Figure 3). However, since the MMU
Driver in the PageSeer HMC does cache the line with the
PTE entry (or, at least, it has already issued a request for
it), the HMC provides the data faster. Note that the HMC
needs to know that this is a request for a line with a PTE
entry. To make this possible, PageSeer adds an identifying
bit in the message that the MMU sends to the L2.

The second, more important benefit occurs when the TLB
in updated with the new translation and the original memory
request is replayed. If the request misses in the caches and
is directed to a page that was in NVM, the prefetch swap
triggered by PageSeer may have brought the page to DRAM.
The result is a faster memory access for this request and
potentially future ones (action � in Figure 3).

C. Structures in the Hybrid Memory Controller

In addition to the MMU signals described in the previous
section, the HMC handles all the memory requests. The
HMC includes some hardware structures that swap pages
between the slow and fast memories, keep track of address
re-mappings, monitor memory activity, and trigger swaps.
We describe them in this section.

1) Page Re-mapping: PageSeer swaps pages without OS
knowledge. As a result, the hardware needs to examine every
request that reaches the HMC to determine if the location
of the page has changed as a result of a swap. PageSeer
accomplishes this with the Page Remapping Table (PRT).
This hardware table is responsible for keeping information
on all the current page re-mappings. The OS is oblivious to
the re-mappings.

The information needed to keep track of all the current
re-mappings is substantial. Moreover, the PRT is accessed
on every main memory access and is on the critical path.
Hence, we need to keep the access time to a minimum.
Consequently, rather than having the whole PRT in the
HMC, PageSeer saves storage and latency by keeping a
cache of the PRT in the HMC, which holds only some of the
PRT entries. We call it PRTc, for PRT cache. The rest of the
entries are stored in DRAM, like in other designs [7]–[9],
[17].

We design the PRT and the PRTc so that they can be
accessed quickly and use the storage efficiently, minimizing
the amount of metadata they need to hold. Specifically, we
constrain the pairs of DRAM and NVM pages that can be
swapped with each other. As shown in Figure 4, only DRAM
and NVM pages of the same cache color can be swapped
with each other. This means that an NVM page can only be
swapped with DRAM pages that map to the same PRTc set.

NVM
PPN

DRAM
PPN

NVM
PPN

DRAM
PPN

NVM
Pages

DRAM
Pages

Page Remapping Table Cache

set

Figure 4: Page Remapping Table Cache (PRTc).

As shown in Figure 4, the PRTc is set-associative, and
each entry has an NVM PPN and a DRAM PPN. The entry
denotes that these two pages have been swapped — i.e., the
NVM data is in DRAM, using the original location of the
DRAM PPN, and vice-versa. With this design, PRTc queries
are fast. When a request for a memory address arrives at the
PRTc, the hardware extracts the address’ PPN. Irrespective
of whether this PPN is in the physical memory range of
NVM or in the physical memory range of DRAM, the same
PRTc set is accessed and the multiple entries are read out.
Then, if this PPN is in the NVM range, the PPN is compared
to the leftmost field in each of the selected entries; if this
PPN is in the DRAM range, it is compared to the rightmost
field in the entries.

This design requires that pages that are not currently
swapped remain in their originally-assigned location. For
example, an NVM page that is swapped to DRAM and then
returns to NVM has to return to its original position. The
same is true for a DRAM page. This design is very space
efficient, as it requires minimal metadata. However, it cannot
support fast swaps.

599

To reduce the cost of swaps, PageSeer uses what we call
Optimized slow swaps. The idea is to reduce the number of
read and write operations by temporarily keeping one of the
pages in a swap buffer. Figure 5 shows an optimized slow
swap. The figure considers three pages: DRAM page � and
NVM pages � and �. In the past, pages � and � have been
swapped. As a result, the state of the memory is represented
by the dark circles in the left figure labeled Step 1.

NVM

DRAM DRAM

2

NVM

readread write
readwrite

write

Step 1 Step 2

Swap Buffers Swap Buffers
1 2

3

2

1 3

32

1

1

3

2

Figure 5: Optimized slow swap operation.

Suppose now that that we need to move page � to DRAM
and, because of the state of the replacement algorithm, it has
to go to the place currently occupied by page �. A fast swap
would simply swap pages � and �, for a total of 2 page
reads and 2 page writes. However, it would not bring � to
its original place in NVM (which is currently used by page
�). A slow swap, instead, would swap � and �, and then
� and �, for a total of 4 page reads and 4 page writes.

An Optimized slow swap leverages the swap buffers to
only perform 3 reads and 3 writes. This is shown by the
white circles. In Step 1, pages � and � are read into the
swap buffers, and page � is written to its original NVM
location. Then, in Step 2, page � is read into a free swap
buffer, and pages � and � are written to NVM and DRAM,
respectively.

2) Initiating Prefetching-triggered Prefetch Swaps: Be-
sides the MMU hints, the other trigger of PageSeer actions
is LLC misses. PageSeer has two hardware structures that
track LLC miss information and initiate swaps. They are the
Page Correlation Table (PCT), which initiates prefetching-
triggered Prefetch Swaps (in addition to assisting in MMU-
triggered Prefetch Swaps), and the Hot Page Tables (HPTs),
which initiate Regular Swaps. In this section, we describe
the PCT; in the next one, we describe the HPTs.

When a page P1 is accessed, the main memory system
often observes a flurry of LLC misses on P1 in a short
period of time, followed by a flurry of misses on another
page P2, and so on. Further, later, when P1 is accessed
again, P1 is often seen to cause a similar flurry of misses,
again followed by a flurry of misses by follower P2. For a
page like P1, a PCT entry saves the number of LLC misses
observed when P1 is accessed, the PPN of its follower page
P2, and the number of misses observed on P2. Later, when
P1 is accessed and triggers its first miss, if its PCT entry’s
miss count is higher than a threshold, and P1 is in NVM,

PageSeer issues a prefetching-triggered prefetch swap for
P1. Further, if P1’s follower P2 has a miss count higher
than the threshold, and P2 is in NVM, PageSeer also issues a
prefetching-triggered prefetch swap for P2. With these early
swaps, PageSeer can avoid repeated, costly NVM accesses.
The miss count threshold is set so that the cost of a swap is
lower than the expected savings to be attained.

In practice, the PCT is too large to keep in the HMC.
Consequently, the HMC keeps a PCT cache (PCTc). A PCTc
entry contains the PPN of a leader page, the number of LLC
misses on the page per invocation, the PPN of the follower
page, and the number of LLC misses on the follower per
invocation. This is shown in the top part of Figure 6.

PPN PID Counter Follower PPN Follower
counter

New Follower
PPN

New Follower
Counter

Filter Entry

PPN Counter Follower PPN Follower counter

PCTc entry

36 bits 12 bits 6 bits 36 bits 6 bits 36 bits 6 bits

36 bits 6 bits 6 bits36 bits

Figure 6: Structure of a PCTc and a Filter entry.

Since the miss patterns of a page change with time,
PageSeer also uses a small hardware Filter table. Its purpose
is to quickly update the information of a page’s PCTc entry.
The Filter table only has a few entries and works as follows.
When the HMC observes an LLC miss for a page, it brings
the page’s PCTc entry (if it exists) into the Filter table. As
execution proceeds, PageSeer recomputes a new miss count
for the page by adding the number of misses observed in
the current invocation plus half the value of the old miss
count. This is done for both leader and follower pages. This
approach is taken to reflect the new miss patterns, while
retaining some history from past invocations. The new miss
counts are stored back in the corresponding PCTc entry.

The structure of a Filter entry is shown in the lower part of
Figure 6. In addition to the leader page’s PPN and counter,
and the follower page’s PPN and counter, it has three more
fields. One is the program identifier (PID) of the process
accessing the leader and follower pages. This is needed so
that, in a multi-program environment, PageSeer does not try
to correlate pages that are accessed by different programs;
we want to correlate leader-follower pages accessed by the
same program.

The two additional fields are the PPN and counter for a
new follower page. It is possible that, in this new use of
leader page P1, P1 is not followed by the use of page P2,
but by the use of page P3. For this reason, the Filter entry
has space to record the accesses to a new follower (P3).
Later, when the Filter entry is to be saved into the PCTc,
only the follower with the highest count is saved.

Each PCTc entry has one additional bit that indicates
whether the entry’s contents have effectively changed since
it was last brought in from the PCT in main memory. An
effective change is one that causes a different swap action
for any of the pages involved. When a PCTc entry is evicted,

600

it is written back to the PCT only if the change bit is set.

Finally, the PCTc state is also used for the MMU-triggered
prefetch swaps of Section III-B. The difference is that the
trigger that causes the PCTc look-up and potentially the two
swaps is not an access to a page. Instead, it is a signal from
the MMU Driver that was initiated by a TLB miss.

3) Initiating Regular Swaps: The Hot Page Tables
(HPTs) are two small hardware tables, one for DRAM pages
and the other for NVM pages, that record the pages that
are being frequently accessed (i.e., are “hot”). Each HPT
entry has a PPN and a counter of how many LLC misses
have been recorded on this PPN. Every time that the HMC
receives an LLC miss for a page, the corresponding counter
is incremented. The counters are automatically halved at
regular intervals. If the counter in an entry reaches zero,
the corresponding page is removed from the HPT.

The goal of the DRAM HPT is to lock hot pages in
DRAM. A DRAM page that appears in the HPT is being
accessed a lot and, therefore, should not be swapped out of
DRAM. The goal of the NVM HPT is to identify NVM
pages that are becoming hot and should be swapped to
DRAM. When the count in an entry of the NVM HPT
reaches a swap threshold, the hardware starts a regular swap
operation for the corresponding NVM page. Note that the
NVM HPT complements the PCTc. The latter may fail to
initiate a swap for the page, either because the PCTc does not
yet have an entry for the page, or because the current count
value is too low to initiate a prefetching-triggered prefetch
swap. The NVM HPT has a lower count threshold to initiate
a swap than the PCTc. Both the HPTs and the PCTc are off
the critical path.

4) Other Structures: The two other HMC structures in
Figure 2 are the MMU Driver and the Swap Driver. The
former gets a signal from the MMU on a page walk. It
then obtains the memory line with the relevant PTE entry
— either from memory or from the small set of lines with
PTEs that it caches. After that, it generates the page PPN
and checks the PCTc to determine if an MMU-Triggered
Prefetch Swap needs to be started for the page. The MMU
Driver also intercepts LLC misses requesting lines with PTE
entries.

The Swap Driver initiates all page swaps. It receives
requests from either the PCTc or the HPT. It also checks
all memory accesses, to ensure that those directed to pages
being swapped get the data from the swap buffers.

D. Putting All Together: PageSeer Operation

After having described the HMC structures, we can ex-
plain PageSeer’s operation. We divide it into three flows: (i)
a regular memory request reaches the HMC, (ii) an MMU
signal or an LLC miss requesting a PTE entry reaches the
HMC, and (iii) a regular memory request reaches the HMC
while a swap is in progress.

1) A Regular Memory Request Reaches the HMC: The
PRTc is accessed to find out the correct address in case the
page is remapped. In parallel, the PCTc and Filter receive

the request. Note that PCTc and Filter use addresses before
remapping, to be able to retain their state across remappings.
If the PRTc or PCTc miss, memory requests are sent to
DRAM to fetch the appropriate entries.

Immediately after the PRTc look-up, we have the correct
address, and the request is sent to main memory (with a
Swap Driver look-up). In parallel, the request is sent to the
DRAM and NVM HPTs. After the Swap Driver receives
signals from the HPTs and the PCTc, it knows whether the
NVM HPT or the PCTc request a swap (for this page and/or
its successor), and which pages cannot be swapped out of
DRAM (from the DRAM HPT). If appropriate, the Swap
Driver initiates page swap(s).

In a swap operation, as the hardware reads a page into a
swap buffer, it starts with the requested cache line first. It
also provides the requested line right away to the processor.

The Swap Driver may refuse to perform a swap if, due
to a large number of requests directed to the DRAM, the
DRAM bandwidth is saturated and the NVM bandwidth is
under-utilized. Performance is usually higher if saturation of
the DRAM links is avoided.

2) An MMU Signal or an LLC Miss Requesting a PTE
Entry Reaches the HMC: As indicated in Section III-C4,
the MMU Driver intercepts these two types of requests. On
an MMU signal, the MMU Driver obtains the PTE, then
fetches the needed PRTc and PCTc entries (if missing) and,
finally, it checks the PCTc to determine whether an MMU-
Triggered Prefetch Swap needs to be initiated. On reception
of an LLC miss requesting a line with a PTE entry, the
MMU Driver provides it from its cache.

3) A Regular Memory Request Reaches the HMC while
a Swap Is in Progress: The Swap Driver checks whether
the request targets a page that is participating in the swap.
If it does not, the request proceeds normally. Otherwise, the
request obtains the data from the appropriate swap buffer.
This helps avoid stalls for requests directed to these hot
pages. The swap buffers temporarily act as prefetch buffers
for these pages.

E. Page Swaps between Memory and Disk

PageSeer is compatible with DMA engines that swap
pages between memory and disk. All DMA requests go
through the HMC, which may change the address if the page
has been remapped. As soon as the HMC receives the first
DMA request to read/write a line, the HMC completes any
swap in progress for that page, then freezes the page (pre-
venting future swaps), and then allows the DMA requests for
that page to proceed. After the DMA is done, the page is
unfrozen. There is no need to change the state of the page in
the HMC structures; the state will dynamically evolve based
on the miss patterns of the new page.

IV. EXPERIMENTAL METHODOLOGY

A. Evaluation Infrastructure

We use cycle-level simulations to model a server archi-
tecture with a 4-core multicore and a 4.5-GB main memory

601

composed of 4 GBs of NVM and 512 MBs of DRAM.
The architecture parameters are shown in Table I. Each
core is an out-of-order core with private L1 and L2 caches,
and a shared L3 cache. It has private L1 and L2 TLBs
and page walk caches for intermediate translations. Each
core has a page walker. We integrate the Simics full-system
simulator [26] with the SST [27], [28] framework, and the
DRAMSim2 [29] memory simulator, similar to [30]. To
model NVM, we modified the DRAMSim2 timing param-
eters as shown in Table I, and disabled refreshes. We use
CACTI [31] for energy and area analysis of the PageSeer
structures. Additionally, we utilize Intel SAE [32] on top of
Simics for OS instrumentation. The page walk is modeled
after the x86 architecture, and leverages the 4-level page
tables created and maintained by the OS to perform the
page walk memory accesses. We accurately model the page
swaps and the accesses to the HMC structures by issuing
the appropriate read and write requests to memory. Our
implementation is based on the Ubuntu 16.04 operating
system.

Processor/MMU Parameters

Cores; Frequency 4 out-of-order cores; 2GHz
Cache line 64B
L1 cache 32KB, 8-way, 2 cycles access latency (AL)
L2 cache 256KB, 8-way, 8 cycles AL
L3 cache 8MB, 16-way, 32 cycles AL, shared
L1 TLB 64 entries, 4-way, 1 cycle AL
L2 TLB 1024 entries, 12-way, 10 cycles AL

Main-Memory Parameters

Capacity DRAM: 512MB; NVM: 4GB
Channels DRAM 4; NVM: 2
tCAS -tRCD-tRAS DRAM: 11-11-28; NVM: 11-58-80
tRP ,tWR DRAM: 11,12 NVM: 11,180
Ranks per Channel DRAM: 1; NVM: 2
Banks per Rank DRAM: 8; NVM: 8
Frequency; Data rate 1GHz; DDR
Bus width 64bits per channel

Operating System: Ubuntu Server 16.04

Table I: Configuration of the system evaluated.

B. Configurations

We compare our design to two state-of-the-art hardware-
managed hybrid memory systems: PoM [7] and Mem-
Pod [8].

PoM: We configure PoM according to the specification
given in previous work [7], but we change the architecture-
related parameters to adjust it better to our configuration.
In the PoM paper, the authors manage die-stacked and
DRAM memories with different latencies than ours. Thus,
we modify their K parameter to 12 to be consistent with our
memory timing model. For the SRC, which is the equivalent
of our PRTc, we use a 32KB cache similar to PageSeer.

MemPod: MemPod uses the MEA algorithm to decide
on memory swaps. Both PoM and MemPod swap at the
granularity of 2KB. For MemPod, we use 64 MEA counters
and make swap decisions every 50 μs, as described in
the original work [8]. We also use a 32KB cache for the

remapping table. MemPod also requires an inverted map
table, but since we lack details about its implementation,
and to be optimistic in our evaluation, we assume a zero
cycle latency for this structure.

PageSeer: The parameters of our design are shown in
Table II. The goal is to keep the size of the entries in the
PRTc and PCTc tables small. As a result, we can have more
entries in the tables and increase their hit rate. The total
size of the HMC structures is less than 72KB, which is very
modest. We also need the full PRT and PCT tables in the
DRAM, but they account for only 1% of our DRAM storage.
In our experiments, we found that caching 16 lines with PTE
entries in the MMU Driver is good enough. Doing so gives
us a hit rate of over 99% for page walk requests that miss
in the LLC and reach the MMU driver.

PageSeer Design Parameters

Swap size 4KB (which is a page)
Counters 6 bits
MMU to HMC latency 2 cycles (at 2GHz)
PCTc prefetch swap threshold 14
HPT swap threshold 6
HPT counter decrease interval 50K cycles (at 1GHz)
PRT 4 way-set associative

PageSeer Hardware Structures

PRTc and PCTc 32KB, 4-way, 1 cycle (at 1GHz)
HPT size (each table) 5.3KB,fully-assoc,4 cycle (at 1GHz)
Filter 2.2KB,fully-assoc,2 cycle (at 1GHz)
MMU Driver 16 lines with PTEs, 64B per line
PRTc,PCTc,HPT,Filter entry 3.5B, 10.5B, 5.25B, 17.25B

PageSeer Hardware Structures – Area and Energy per Access
Area(A) ∗10−3mm2, Leakage(L) mW , Rd/Wr(R/W) pJ

PRTc A: 54.9, L: 11.4, R/W: 14.8/14.4
PCTc A: 36.8, L: 11.4, R/W: 14.7/16.7
HPT A: 23.7, L: 9.1, R/W: 1.8/2.6
Filter A: 7.7, L: 2.3, R/W: 1.4/2.7

PageSeer Structures in DRAM

PRT 426KB
PCT 7MB with follower

884.7KB without follower

Table II: PageSeer parameters.

C. Workloads

To evaluate the efficacy of our design, we run 20 different
benchmarks organized into 26 workloads. They are shown
in Table III, with the memory footprint for our simulated
period when a single instance of the benchmark is running.
We choose eight memory intensive benchmarks from the
SPEC CPU2006 suite [33], six benchmarks from Splash-3
suite [34] and six benchmarks from CORAL [35], which are
used for testing HPC systems. There are two types of work-
loads. The first twenty are unique-benchmark workloads,
where we run multiple instances of the same benchmark on
different cores. Typically, we run four instances. However,
in cases where the memory footprint was not enough to
stress our memory system, we increased the number of cores
and run more instances of the same benchmark (see Table
III). The next workloads are 6 mixes of benchmarks, where
different benchmarks are running on different cores.

602

Workload MB(Single) Workload MB(Single)

lbm×4 422 luNCon×4 520
milc×4 380 oceanCon×4 887

bwaves×4 385 barnes×8 250
GemsFDTD×4 502 radix×4 648

mcf×8 290 stream×4 457
libquantum×6 267 miniFE×4 480

omnetpp×8 164 LULESH×4 914
leslie3d×12 62 AMGmk×4 350

fft×4 768 SNAP×4 441
luCon×4 520 MILCmk×4 480

mix1: lbm-LULESH-SNAP-leslie3d
mix2: AMGmk-luCon-radix-barnes
mix3: miniFE-oceanCon-barnes-AMGmk
mix4: LULESH-MILC-miniFE-stream
mix5: luCon-radix-oceanCon-barnes
mix6: libquantum-lbm-mcf-bwaves

Table III: Workloads.

For the unique-benchmark workloads, we simulate 2
billion instructions per core, while for the mixed-benchmark
workloads, we simulate until a core reaches 2 billion instruc-
tions, or a program terminates. In both cases, we perform
1.5 billion instructions of warm-up per core.

V. EVALUATION

A. PageSeer Characterization

The goal of PageSeer is to identify pages that are “hot”
and move them to DRAM as soon as possible, while
preparing the HMC structures for accesses to these pages.
As a result, PageSeer’s effectiveness can be quantified by
how accurately it recognizes present and future “hot” pages,
and how fast it manages to move them to DRAM. In this
section, our simulations do not take into account contention
for main-memory system bandwidth. In reality, maximum
performance will be obtained when some memory requests
actually access the NVM rather than the DRAM, so that the
overall bandwidth of both memories is effectively utilized.
However, in this section, we want to know if PageSeer can
identify the pages that are worth moving to DRAM.

In Figure 7, we present what fraction of the main-memory
accesses were serviced from DRAM, NVM, or the swap
buffers for the three configurations we are comparing. Each
bar of the plot represents one of the three configurations
(PoM, MemPod, and PageSeer), and each bar shows a
breakdown of the memory requests serviced from each
memory module. We present the results for each benchmark
suite and our mixes. From this figure, we see that PageSeer
directs a vast number of memory requests to DRAM (88.5%
on average), a small but non-negligible number to the swap
buffers (2.2% on average) and the rest to NVM. Compared
to the other two schemes, PageSeer can better recognize and
predict hot pages, and move them to fast memory on time.

The improvement over PoM and MemPod is mainly be-
cause of two reasons. First, PageSeer takes a swap decision
ahead of time, so it does not wait until requests start hitting
the NVM to initiate a swap. The second reason is that the
MMU signal and the history of page accesses in the PCTc
are an accurate indication of future accesses to a page. What

Figure 7: Percentage of main-memory accesses to each
memory module for PoM, MemPod, and PageSeer.

is more, MemPod swaps pages at regular time intervals,
which are not optimal for every application. In addition,
all pages qualified for a swap start moving at the same
time, causing swap bursts. As for PoM, it restricts its swap
flexibility with a direct mapped re-mapping table, losing the
opportunity to have multiple pages of the same swap group
in DRAM.

Figure 8 depicts the result of the swaps for each configu-
ration. The figure shows the positive, the negative, and the
neutral main-memory accesses as a percentage of the total
main-memory accesses for each configuration. We consider
a main-memory access to be positive when it accesses
DRAM instead of NVM thanks to a swap operation, and
negative when the opposite happens. Neutral accesses are
those that end-up accessing the same type of memory as
a run without swaps. We see that, on average, PageSeer
attains 16% and 13% more positive accesses than PoM and
MemPod, respectively, and that it removes practically all of
the negative accesses. To achieve that, it can be shown that
PageSeer introduces 1% and 2.8% more swaps than PoM
and MemPod, respectively.

Figure 8: Characterization of swap effectiveness for PoM,
MemPod, and PageSeer.

The takeaway is that PageSeer is capable of identifying
hot pages and swapping them to fast memory. The result is
a high percentage of positive accesses (81.3% on average)
and only 1% of negative accesses on average.

Next, we present the accuracy and effectiveness of the
prefetch swap mechanism alone. Recall from Section III-A
that PageSeer supports regular swaps (initiated by the HPT)

603

and prefetch swaps (initiated by the PCTc). The latter can be
triggered by either a hint from the MMU (MMU-triggered
Prefetch Swaps), or a regular memory access (Prefetching-
triggered Prefetch Swaps). In this discussion, we focus on
prefetch swaps only.

Figure 9 presents the accuracy of prefetch swaps. A swap
is deemed accurate when the number of accesses to the
swapped page in fast memory is enough to justify the page
swap cost. In our experiments, we want to attain at least 14
positive accesses to a page to recognize the prefetch swap
of the page as accurate. As we can see from the figure,
our mechanism is accurate in the vast majority of times. It
has an average accuracy of 86.7%. GemsFTDT is the only
benchmark for which the accuracy of our mechanism is low
(28.3%) and we also perform lots of prefetches (as we will
see later). This occurs because the pattern of accesses to
pages changes with time. luCon experiences relatively low
accuracy but, as we will see, the total number of prefetches
is not high enough to cause an application slowdown.

Figure 9: Accuracy of PageSeer’s prefetch swaps.

In Figure 10, we present the percentage of swaps that
are prefetch swaps. We break the prefetch swaps into
prefetching-triggered and MMU-triggered. The remaining
swaps to 100% in the figure are regular swaps. The bench-
marks are organized into two groups. The group on the
left contains those benchmarks for which PageSeer is not
able to generate many prefetch swaps. This can happen
because the pages for these benchmarks do not receive
enough accesses to qualify for prefetching. Another reason
may be that the highly-accessed pages of the application are
moved to DRAM and the remaining pages are not worth
swapping. However, even PageSeer’s prefetch mechanism
cannot find prefetch opportunities, PageSeer can still provide
high performance through the use of the HPTs.

The group on the right contains those benchmarks for
which PageSeer generates many prefetch swaps. We see
that these are the most common benchmarks. Importantly,
we see that MMU-triggered swaps are much more frequent
than prefetching-triggered swaps. This shows the benefit of
leveraging the MMU hints to initiate swaps.

Overall, on average for all the benchmarks, prefetch swaps
account for 62.8% of all the swaps. In addition, 48.6% of

Figure 10: Percentage swaps that are prefetch swaps in
PageSeer.

all the swaps are MMU-triggered swaps.

B. PageSeer Performance

In this section, we evaluate the performance of PageSeer.
We consider a variety of metrics that give insights into
PageSeer. Our simulations in this section take into account
the contention for the main-memory system bandwidth.

In this environment, we want to avoid saturating the
DRAM channels and not using the NVM channels. Con-
sequently, our Swap Driver uses a simple heuristic to avoid
the most extreme imbalanced conditions. Specifically, when
the Swap Driver observes that the DRAM channels are
saturated, it considers declining some of the incoming swap
requests. Specifically, it declines to swap requests if over
95% of the main-memory requests up to this point in the
application have been satisfied by DRAM. While this is a
primitive heuristic, it is effective.

To assess the impact of this heuristic, in Figure 11, we
show the rate of swaps in each benchmark suite, in swaps
per kilo-instruction. Each suite has two bars. PageSeer w/
BW-opt corresponds to PageSeer; PageSeer w/o BW-opt
corresponds to PageSeer without the Swap Driver heuristic
described above to limit DRAM channel saturation. On av-
erage, these rates are 0.19 and 0.35 swaps per Kinstruction,
respectively. The heuristic has an impact.

Figure 11: Swap rate.
Figure 12: Cache miss rate of
PTEs on a TLB miss.

We now examine one aspect of how PageSeer helps TLB
misses. In Figure 12, we consider the TLB misses and
record whether the resulting request for the PTE does miss
in the caches (L2 or L3). The figure shows the miss rate
of such requests. We see that, on average, 14.5% of these

604

requests miss in the caches and reach the HMC. Fortunately,
as indicated above, it can be shown that over 99% of
these misses are satisfied by the cache in the MMU Driver.
Consequently, PageSeer is effective at reducing the latency
of such accesses.

The performance benefits of PageSeer come from three
factors. First, PageSeer predicts that a page in NVM will
receive a large number of main memory accesses in the near
future, and moves the page to DRAM before the requests
arrive. The result is an increase in the number of accesses
that are satisfied by DRAM. Figures 7 and 8 showed that
PageSeer is very effective at exploiting this factor.

The second factor is that PageSeer can satisfy main-
memory requests for pages that are currently taking part
in a swap. Specifically, the swap buffers can serve memory
requests if they contain the data requested. However, we
showed in Figure 7 that only a small percentage of the total
main-memory accesses are serviced from the swap buffers.

The third factor is that a request in PageSeer spends
relatively little time in the HMC structures, and particu-
larly in the PRTc. This is because, as soon as the HMC
receives an MMU hint, or information from the PCTc that
a follower page will be prefetched, the PageSeer hardware
starts fetching the corresponding PRTc and PCTc entries
for the pages. It is especially important to load the PRTc
as soon as possible, since it stands on the critical path of a
memory request. Note that the time wasted in a PRTc miss is
not negligible. On a PRTc miss, the hardware has to access
DRAM. The earlier that we fetch these entries, the better.

To assess this factor, Figure 13 compares the total time
that requests in PageSeer and PoM spend waiting at the
PRTc to load PRTc entries. Specifically, the figure shows
the reduction of the waiting time in PageSeer compared to
PoM. We use the same size PRTc (32KB) for both PageSeer
and PoM.

Figure 13: Reduction of the PRTc waiting time in PageSeer
compared to PoM.

The figure shows that, on average, the total request waiting
time for the PRTc in PageSeer is 61.8% lower than in PoM.
Of course, many of the requests may be serviced in parallel.
However, this is sizable number that affects the performance

of the schemes. It can be shown that the magnitude of this
waiting time is equal to 18% of the total execution time of
the benchmarks in PoM, and to 12.8% of the total execution
time in PageSeer. In addition, it can be shown that the hit
rate in the PRTc is 3.5 points higher in PageSeer than in
PoM.

Taking all this into account, in Figure 14, we compare the
overall performance of PoM, MemPod, and PageSeer. The
top graph in Figure 14 shows the IPC of each application
in PoM and PageSeer normalized to MemPod. The bot-
tom graph depicts the Average Main-Memory Access Time
(AMMAT) of each application in PoM and PageSeer, also
normalized to MemPod. As in previous work [8], AMMAT
is calculated as the average time spent by a main-memory
request to go from the memory controller to main memory
and back to the memory controller.

The top graph shows that PageSeer outperforms MemPod
and PoM. On average across all the benchmarks, the IPC in
PageSeer is 28% and 19% higher than in MemPod and PoM,
respectively. Furthermore, the bottom graph shows that the
main-memory requests in PageSeer take less time to access
main memory than in the other architectures. Specifically,
on average across all the benchmarks, the AMMAT in
PageSeer is 37% and 29% lower than in MemPod and PoM,
respectively.

Even for benchmarks where PageSeer cannot perform
many prefetch swaps (shown in the leftmost side of Fig-
ure 10), PageSeer still delivers a performance equivalent or
better than PoM. The reason is two-fold. First, the NVM
HPT in PageSeer still triggers swaps. Second, PageSeer
has less stall due to PRTc misses than PoM for all the
benchmarks, as shown in Figure 13. For example, consider
mcf. While PageSeer is unable to perform many prefetch
swaps (Figure 10), its lower PRTc stall time induces speed-
ups over PoM.

Out of the 26 workloads that we tested, PoM has a
higher IPC than PageSeer only in milc and GemsFTDT;
MemPod never has a higher IPC than PageSeer. These two
benchmarks experience lower than average prefetch swap ac-
curacy, as shown in Figure 9. As a result, their performance
is harmed. This occurs because pages experience different
access patterns at different times.

Overall, our experimental results confirm that PageSeer
efficiently manages a hybrid memory system, and that the
communication between the MMU and the HMC increases
performance.

C. Analysis of Page Correlation Prefetching

PageSeer uses page correlation prefetching to initiate
some of the prefetch swaps. We want to understand the
contribution of this technique to the overall performance.
Consequently, we evaluate an architecture like PageSeer
except that PCTc entries have no follower information.
As a result, there is no correlation prefetching (PageSeer-
NoCorr).

We find that, on average, PageSeer and PageSeer-NoCorr

605

Figure 14: IPC and AMMAT in PageSeer and PoM normalized to the same measures in MemPod.

deliver similar performance. The reason is that, often, the
MMU signal alone is able to notify the HMC about most
of the future page accesses. Hence, the hardware is able to
prefetch pages to DRAM without the correlation prefetch-
ing mechanism. However, the results vary across bench-
marks. For example, it can be shown that radix shows
a performance improvement of 11% with PageSeer over
PageSeer-NoCorr, while LULESH shows 3% performance
reduction. In general, supporting correlation prefetching is
advantageous when the MMU signal cannot notify the HMC
about the forthcoming pages. This occurs when there are
few TLB misses. On the other hand, supporting correlation
prefetching is undesirable when the page access patterns
change frequently.

VI. OTHER RELATED WORK

Bhattacharjee [36] proposes TEMPO, which involves us-
ing the virtual to physical address translation process to
prefetch a data cache line into the LLC. As a page walk
request for the PTE reaches the memory controller, the
memory controller fetches the cache line with the PTE, and
uses the PTE value to fetch the cache line that triggered
the page walk into the LLC. It also prepares the DRAM
row buffer for accesses to nearby cache lines. TEMPO is
different from PageSeer in three ways. First, TEMPO targets
cache line prefetching, while PageSeer targets optimizing
hybrid memory systems. Second, TEMPO prefetches a cache
line into the LLC, while PageSeer initiates page swaps be-
tween slow and fast memory. Finally, TEMPO only initiates
prefetches for page walk requests that miss in the LLC, while

PageSeer initiates an MMU hint for every single page walk.

Section II-B described hardware schemes for managing
hybrid memory systems, either as a flat memory address
space or as a DRAM cache for NVM. Apart from the
different swap triggers that we discussed, these schemes
tackle some other aspects that can be incorporated into our
scheme without major modifications. For instance, SILC-
FM [9] suggests a method to swap only a portion of a page.
This method can be adopted by PageSeer and save memory
bandwidth. A bitmap for a page can tell us which cache
lines from a page are worth swapping, and avoid moving
4KB of data. MemPod [8] mentions a clustered architecture
that groups together memory controllers to be more scalable.
The same approach can be embraced by PageSeer.

In Section II-A, we mentioned software schemes for
hybrid memory management. Besides the aforementioned
methods, hybrid memory systems are an active area of
research. There are proposals for hardware/sofware tech-
niques for effective page placement [21], [37]–[39]. These
techniques require either annotations to the applications and
compiler support to identify “hot” data structures at compile
time, or OS involvement to track memory activity and swap
pages. The role of the hardware is to inform the OS about
pages that need to be swapped. In other schemes [38],
[40], the OS involvement is proposed as an optimization,
to periodically update the page table entries, and relieve
some pressure from the hardware remapping tables. The
remapping table entries can be freed if the OS updates its
page tables with the remapping information.

A well-known mechanism to hide memory latency is data

606

cache prefetching. In theory, a data cache prefetcher could
be used in PageSeer if it could help identify pages that
will soon be accessed and, therefore, trigger DRAM-NVM
swaps. However, data cache prefetches are not issued as
early as PageSeer’s MMU hints. Specifically, a regular data
prefetcher will not issue any prefetches until the TLB has the
translation for the page. On the other hand, our MMU hints
give early information to the HMC about future accesses
— before the TLB entry is filled and memory requests for
the page are generated. Thus, PageSeer can start the swap
earlier and prepare the HMC structures.

Researchers have examined the use of prefetching for
hybrid memory systems [20], [41], [42], to prefetch pages
from the slow to the fast memory. In our paper, we examine
correlation prefetching. Correlation prefetching has been
used in the past for cache lines [43], [44]. Here, we use it to
prefetch pages. The intuition behind it is that, many times,
a program accesses a set of pages multiple times during the
execution, in the same or similar order. Keeping information
about the correlation between these pages can help us swap
future pages before we see any requests for these pages.
Our mechanism has to identify the page patterns using
only LLC misses, coming from shared caches in a possibly
multi-programmed environment. Of course, the page access
patterns may change during program execution. Thus, we
need a page correlation mechanism that is able to identify
access patterns adaptively across different programs.

VII. CONCLUSION

This paper presented PageSeer, a scheme that performs
hardware-managed page swapping in a hybrid memory sys-
tem using hints from the page walk in a TLB miss. During
the generation of the physical address for a page in a TLB
miss, the memory controller is informed. The controller uses
historic data on the accesses to that page and to its follower
page to potentially initiate MMU-Triggered Prefetch Swaps
for the page and for its follower. PageSeer also initiates other
types of page swaps, as it builds a complete solution for
hybrid memory. Our evaluation of PageSeer with simulations
of 26 workloads showed that PageSeer effectively hides the
swap overhead and services many requests from the DRAM.
Compared to a state-of-the-art hardware-only scheme for
hybrid memory management, PageSeer on average improved
performance by 19% and reduced the average main memory
access time by 29%.

ACKNOWLEDGMENTS

This work was funded by a Research Award from SK
Hynix, Inc. Their support is gratefully acknowledged. We
also thank Dr. Il Park for his advice.

REFERENCES

[1] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. De-
Brosse, R. Divakaruni, Y. Li, and C. J. Radens, “Challenges
and future directions for the scaling of dynamic random-
access memory (DRAM),” IBM Journal of Research and
Development, March 2002.

[2] M. K. Qureshi, S. Gurumurthi, and B. Rajendran, Phase
Change Memory: From Devices to Systems. Morgan &
Claypool Publishers, 1st ed., 2011.

[3] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and
O. Mutlu, “Evaluating STT-RAM as an energy-efficient main
memory alternative,” in 2013 IEEE International Symposium
on Performance Analysis of Systems and Software, April
2013.

[4] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting
Phase Change Memory As a Scalable DRAM Alternative,”
in the 36th Annual International Symposium on Computer
Architecture, pp. 2–13, 2009.

[5] F. T. Hady, A. Foong, B. Veal, and D. Williams, “Platform
Storage Performance With 3D XPoint Technology,” Proceed-
ings of the IEEE, Sept 2017.

[6] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable
High Performance Main Memory System Using Phase-change
Memory Technology,” in the 36th Annual International Sym-
posium on Computer Architecture, 2009.

[7] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and
H. Kim, “Transparent Hardware Management of Stacked
DRAM As Part of Memory,” in the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, 2014.

[8] A. Prodromou, M. Meswani, N. Jayasena, G. Loh, and D. M.
Tullsen, “MemPod: A Clustered Architecture for Efficient
and Scalable Migration in Flat Address Space Multi-level
Memories,” in 2017 IEEE International Symposium on High
Performance Computer Architecture, Feb 2017.

[9] J. H. Ryoo, M. R. Meswani, A. Prodromou, and L. K. John,
“SILC-FM: Subblocked InterLeaved Cache-Like Flat Mem-
ory Organization,” in 2017 IEEE International Symposium on
High Performance Computer Architecture, Feb 2017.

[10] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison
Cache: A Scalable and Effective Die-Stacked DRAM Cache,”
in the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-47, 2014.

[11] G. H. Loh and M. D. Hill, “Efficiently Enabling Conventional
Block Sizes for Very Large Die-stacked DRAM Caches,”
in the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, 2011.

[12] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan,
“Enabling Efficient and Scalable Hybrid Memories Using
Fine-Granularity DRAM Cache Management,” IEEE Com-
puter Architecture Letters, July 2012.

[13] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-
off in Architecting DRAM Caches: Outperforming Impracti-
cal SRAM-Tags with a Simple and Practical Design,” in the
2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, 2012.

[14] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi,
“A Mostly-Clean DRAM Cache for Effective Hit Specula-
tion and Self-Balancing Dispatch,” in the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture,
2012.

[15] L. Zhao, R. Iyer, R. Illikkal, and D. Newell, “Exploring
DRAM cache architectures for CMP server platforms,” in
2007 25th International Conference on Computer Design, Oct
2007.

607

[16] C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A Two-
Level Memory Organization with Capacity of Main Memory
and Flexibility of Hardware-Managed Cache,” in 47th Annual
IEEE/ACM International Symposium on Microarchitecture,
2014.

[17] D. Knyaginin, V. Papaefstathiou, and P. Stenstrom, “ProFess:
A Probabilistic Hybrid Main Memory Management Frame-
work for High Performance and Fairness,” in 2018 IEEE
International Symposium on High Performance Computer
Architecture, Feb 2018.

[18] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ig-
natowski, and G. H. Loh, “Heterogeneous memory architec-
tures: A HW/SW approach for mixing die-stacked and off-
package memories,” in 2015 IEEE 21st International Sympo-
sium on High Performance Computer Architecture, Feb. 2015.

[19] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and
J. W. Lee, “A Fully Associative, Tagless DRAM Cache,”
in the 42nd Annual International Symposium on Computer
Architecture, 2015.

[20] M. Oskin and G. H. Loh, “A Software-Managed Approach
to Die-Stacked DRAM,” in 2015 International Conference on
Parallel Architecture and Compilation, Oct 2015.

[21] N. Agarwal and T. F. Wenisch, “Thermostat: Application-
transparent Page Management for Two-tiered Main Memory,”
in the Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, 2017.

[22] T. Straumann, “Open Source Real-Time Operating System
Overview (Invited),” in Accelerator and Large Experimental
Physics Control Systems (H. Shoaee, ed.), p. 235, 2001.

[23] J. B. Kotra, H. Zhang, A. R. Alameldeen, C. Wilkerson,
and M. Kandemir, “CHAMELEON: A Dynamically Recon-
figurable Heterogeneous Memory System,” in the 51st Annual
IEEE/ACM International Symposium on Microarchitecture,
2018.

[24] R. M. Karp, C. H. Papadimitriou, and S. Shenker, “A Simple
Algorithm For Finding Frequent Elements In Streams and
Bags,” ACM Transactions on Database Systems, vol. 28,
p. 2003, 2003.

[25] C. Chou, A. Jaleel, and M. Qureshi, “BATMAN: Techniques
for Maximizing System Bandwidth of Memory Systems with
Stacked-DRAM,” in the International Symposium on Memory
Systems, 2017.

[26] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt,
and B. Werner, “Simics: A full system simulation platform,”
Computer, vol. 35, pp. 50–58, Feb 2002.

[27] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey,
R. Oldfield, M. Weston, R. Risen, J. Cook, P. Rosenfeld,
E. CooperBalls, and B. Jacob, “The Structural Simulation
Toolkit,” SIGMETRICS Perform. Eval. Rev., vol. 38, Mar.
2011.

[28] A. Awad, S. D. Hammond, G. R. Voskuilen, and R. J. Hoek-
stra, “Samba: A Detailed Memory Management Unit (MMU)
for the SST Simulation Framework,” Tech. Rep. SAND2017-
0002, Sandia National Laboratories, January 2017.

[29] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A
Cycle Accurate Memory System Simulator,” IEEE Computer
Architecture Letters, Jan 2011.

[30] D. Skarlatos, N. S. Kim, and J. Torrellas, “PageForge: A
Near-memory Content-aware Page-merging Architecture,” in
the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, 2017.

[31] R. Balasubramonian, A. B. Kahng, N. Muralimanohar,
A. Shafiee, and V. Srinivas, “CACTI 7: New Tools for
Interconnect Exploration in Innovative Off-Chip Memories,”
ACM Trans. Archit. Code Optim., vol. 14, June 2017.

[32] N. Chachmon, D. Richins, R. Cohn, M. Christensson, W. Cui,
and V. J. Reddi, “Simulation and Analysis Engine for Scale-
Out Workloads,” in the 2016 International Conference on
Supercomputing, 2016.

[33] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,”
SIGARCH Comput. Archit. News, vol. 34, Sept. 2006.

[34] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-
3: A properly synchronized benchmark suite for contempo-
rary research,” in 2016 IEEE International Symposium on
Performance Analysis of Systems and Software, April 2016.

[35] “CORAL Benchmark Codes.” https://asc.llnl.gov/
CORAL-benchmarks/.

[36] A. Bhattacharjee, “Translation-Triggered Prefetching,” in the
Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems,
2017.

[37] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, “Het-
eroOS: OS Design for Heterogeneous Memory Management
in Datacenter,” in the 44th Annual International Symposium
on Computer Architecture, 2017.

[38] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement
in Hybrid Memory Systems,” in the International Conference
on Supercomputing, 2011.

[39] F. X. Lin and X. Liu, “Memif: Towards Programming Het-
erogeneous Memory Asynchronously,” in the Twenty-First
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2016.

[40] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas,
“Banshee: Bandwidth-efficient DRAM Caching via Soft-
ware/Hardware Cooperation,” in the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, 2017.

[41] M. Islam, S. Banerjee, M. Meswani, and K. Kavi, “Prefetch-
ing as a Potentially Effective Technique for Hybrid Memory
Optimization,” in the Second International Symposium on
Memory Systems, 2016.

[42] S. Volos, J. Picorel, B. Falsafi, and B. Grot, “BuMP: Bulk
Memory Access Prediction and Streaming,” in the 47th An-
nual IEEE/ACM International Symposium on Microarchitec-
ture, 2014.

[43] Y. Solihin, J. Lee, and J. Torrellas, “Using a user-level
memory thread for correlation prefetching,” in 29th Annual
International Symposium on Computer Architecture, 2002.

[44] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction
and dead-block correlating prefetchers,” in 28th Annual In-
ternational Symposium on Computer Architecture, 2001.

608

